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THE DISTRIBUTION OF NELTTRAL ATOMS AND CHARGE-EXCHANGE IONS DOWNSTREAM OF AN I O N  THRUSTOR 

by John F. Staggs, W i l l i a m  P. Gula, and W i l l i a m  R.  Kerslake 

Lewis  Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

ABSTRACT 

I n  a p r a c t i c a l  design of an e lec t r ic -propuls ion  
space vehicle,  it is l i k e l y  t h a t  some components, 
such 3s a so la r - ce l l  array,  w i l l  be exposed i n  some 
degree t o  neu t r a l  atoms and charge-exchange ions 
leaving t h e  th rus to r s .  The purpose of t h i s  paper 
i s  t o  describe the  energy and angular d i s t r ibu t ions  
of such p a r t i c l e s  emerging from a 15 cm diameter 
mercury electron-bombardment th rus to r .  An ana ly t i -  
c a l  approach was used to determine the  p a r t i c l e  e f -  
f l lues .  The r e s u l t s  i nd ica t e  t h a t  the erosion and/ 
or coatings due t o  charge-exchange ions or neu t r a l  
p a r t i c l e  e f f luxes  would be to l e rab le  fo r  severa l  
years i f  components were loca ted  outside the  p r i -  
mary ion beam and a t  distances of 75 cm o r  g rea t e r  
from the  th rus to r .  The value of 7 5  cm w a s  chosen 
t o  simplify the  ana ly t i ca l  so lu t ion .  A t  distances 
much c loser  than 75 cm a more de t a i l ed  study would 
be required because the  thrus tor  can no longer be 
accurately represented as a point. sourc?. Approxi- 
m a t e  s ca l ing  r e l a t i o n s  are given t h a t  should allow 
rough determination of p a r t i c l e  e f f luxes  f o r  v a r i -  
ous combinations of nominal operating parameters 
o ther  than those used i n  t h i s  study. r ' n  

INTRODUCTION w 
E l e c t r i c  propulsion i s  becoming more a t t r a c -  

t i v e  f o r  a va r i e ty  of spacef l igh t  missions as a r e -  
sult of improvements i n  th rus to r  performance and 
component technology. For example, an in t e re s t ing  
design study has been made recent ly  t o  inves t iga te  
the  f e a s i b i l i t y  of e l e c t r i c  propulsion systems for  
unmanned probes (ref. 1). 
problems found i n  t h e  course of such design s tudies  
concerns t h e  r e l a t i v e  placement of t h rus to r s  with 
respec t  t o  t h e  so l a r - ce l l  a r rays  o r  o ther  space- 
c r a f t  components ( r e f .  2 ) .  If the spacecraft  is  
designed for maximum compactness and minimum weight, 
it i s  l i k e l y  t h a t  t he  so l a r - ce l l  a r ray  w i l l  be ex- 
posed t o  some amount of neu t r a l  atoms and/or ions 
leaving t h e  th rus to r .  The major d i rec ted  p a r t  of 
t h e  ion  beam i s  e a s i l y  avoided. However, t he  "edge" 
of t h e  beam is not w e l l  defined due t o  the  presence 
of charge-exchange ions i n  t h e  th rus to r  exhaust. 
I n  recent  long  dura t ion  t e s t s ,  neu t r a l i ze r s  were 
mounted i n  regions outside the  major d i r ec t ed  ion  
beam and they experienced appreciable ion  erosion 
( r e f .  3). The ex ten t  of t h e  damage was  found t o  
decrease as t h e  r a d i a l  d i s tance  from the  beam axis 
increased. Thus, t h e  problem arises of defining 
regions i n  which poss ib le  n e u t r a l  p a r t i c l e  coatings 
and/or i on  e ros ion  w i l l  be a t  an acceptable l eve l .  
O f  course, acceptable l eve l s  must be determined 
from considering t h e  mission duration, t he  spectrum 
of p a r t i c l e s  leav ing  the  th rus to r s ,  and the  proper- 
t ies  of t h e  spacecraf t  s t ruc tu re  h i t  by these par- 
t i c l e s .  

One of t h e  poss ib le  

ment th rus tor .  
quan t i t i e s  are small, accurate experimental measure- 
ments are very d i f f i c u l t .  However, t he  processes 
giving r i s e  t o  such ef f luxes  a r e  f a i r l y  w e l l  under- 
stood s o  t h a t  an ana ly t i ca l  approach may be used. 
Although the  r e s u l t s  obtained a re  not prec ise ,  they 
are adequate f o r  i n i t i a l  spacecraf t  design calcula- 
t i ons .  I n  addition, they serve t o  ind ica t e  which 
aspects of the  problem may deserve more de t a i l ed  

Because t h e  magnitudes of these 

study . 

Model and General Approach 

The th rus to r  used as the  bas i s  of t h i s  study i s  
described i n  reference 3 and shown i n  f igu re  1. A t  
normal operating conditions the  beam curren t  from 
t h i s  th rus tor  is  250 mA, ex t rac ted  with a screen 
voltage of 3 kV and an acce lera tor  voltage of -2 kV. 
With 511 holes i n  t h e  electrodes,  t he  average cur- 
r e n t  per hole is  about 0.49 d. The ext rac ted  c w -  
r e n t  d i s t r ibu t ion  across the th rus to r  i s  such t h a t  
a t  t h e  center  t he  maximum curren t  per  hole i s  about 
1.0 mA, or about twice t h e  average value.  The cur- 
r e n t  ex t rac ted  from t h e  outer  perimeter holes i s  
about 0.25 mA per hole.  
operated a t  a propel lan t  u t i l i z a t i o n  e f f ic iency  of 
80 percent.  
resulting i n  a neu t r a l  atom temperature i n  t h e  d i s -  
charge chamber of about t he  same value.  

The t h r u s t o r  is  normally 

Anode w a l l  temperature i s  about 500' K, 

For t h e  ana lys i s ,  t he  possible charge-excharge 
ions were grouped as follows: 

(1) those leaving the  th rus to r  with dispersion 
angles between 0' and 20' (considered t o  be 
within t h e  primary ion  beam) 

( 2 )  those leaving t h e  th rus to r  with dispersion 
angles between 20' and 90' 

(3) those re turn ing  t o  the  th rus to r  and imping- 
ing  on the  acce lera tor  e lec t rode  

(4) those produced downstream of t he  neu t r a l i -  
zation plane and not returning t o  t h e  th rus to r  

The ions i n  groups (2)  and (4) were of prime 
i n t e r e s t  fo r  t h i s  study, since these  ions may i m -  
pinge on surfaces downstream of t h e  th rus to r .  Fig- 
ure 2 shows typ ica l  t r a j e c t o r i e s  of t h e  four groups 
of charge-exchange ions and the  approximate region 
of o r ig in .  The zero v o l t  equipoten t ia l  l i n e ,  which 
f a l l s  between t h e  screen and acce lera tor ,  was r e -  
garded as the  downstream boundary of t he  formation 
region for the  group (2) ions. 
i on  formed a t  a negative po ten t i a l  would r e tu rn  t o  
the thrus tor .  

This was because any 

The electrode configuration shown i n  f igure  2 
represents  one hole of t h e  thrus tor  ex t rac t ion  sys- 
*^__ b S U .  m- A 1 1 5  -^+^..+*^, pYUGUUIc"-L U U  ^+ +L^ U11L +--:-,.+-...- U I U J L L W V L J  -+,.-+<..- m U * * " I a *  -.̂ <-..* p V I & A U  
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t h a t  po in t .  
tangent t o  the  t r a j ec to ry  a t  t he  point where the ion  

The angle between t h e  center l ine  and a 
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gnters  t h e  neut ra l ized  exhaust plasma w a s  used t o  
determine the  angular d i s t r i b u t i o n  of the  charge- 
exchange ions.  
charge-exchange ions i n  t h e  region downstream of 
the  neu t r a l i za t ion  plane w a s  t r ea t ed  a s  a separate 
problem and w i l l  be discussed l a t e r .  

The formation of t h e  group 4 

The charge-exchange ana lys i s  was made using an 
IBM 7094 d i g i t a l  computer program ( r e f .  4) and an 
e l e c t r o l y t i c  tank analog ( r e f .  5) i n  a combined 
manner described i n  d e t a i l  i n  reference 6.  Briefly, 
the  technique involves determining t h e  Poisson po- 
t e n t i a l  d i s t r ibu t ion  of t he  des i red  model using the  
d i g i t a l  computer program, then es tab l i sh ing  t h i s  
d i s t r ibu t ion  i n  the  e l e c t r o l y t i c  tank. (With t h i s  
method t h e  po ten t i a l  d i s t r i b u t i o n  of an ax ia l ly  
symmetric model i s  r ead i ly  es tab l i shed  i n  a simple 
two-dimensional ( f l a t  bottom) t r a y  of t he  e lec t ro-  
l y t i c  tank analog.) 
has been es tab l i shed ,  t he  exhaust beam i s  a r b i t r a r -  
I ~ , y  I; vL&J i n t o  G x z 5 c r  of mesh c;xires ClhargP 
exchange ion t r a j e c t o r i e s  a r e  then s t a r t e d  with 
zero i n i t i a l  ve loc i ty  from t he  centers of these  
mesh squares and t r aced  on an X-Y p lo t t e r .  
c a l  charge-exchange ion  production r a t e  i s  then 
ca lcu la ted  as follows. The charge-exchange ion  
production r a t e  i n  an element of volume i s  

Once t h e  proper d i s t r ibu t ion  

. _  

The lo-  

b =  % n o m  a (1) 

where Q is t h e  c ross  sec t ion  f o r  chdrge-exchange 
( the  value 6xlO-l5 cm2 was used f o r  mercury). 
symbols a r e  defined i n  appendix A.) 
of vnlume i n  t h i s  rase are to ro ida l  with square 
cross sec t ion  ( a  I 2 1 5  AL, where 
rad ius  of t he  to ro id ) .  

(All 
The elements 

P is  t h e  averege 

The primary ion  a r r i v a l  r a t e  A, w a s  calcu- 
l a t e d  by a technique similar t o  the  one used i n  de- 
termining charge cont r ibu t ion  of flowing ions t o  
elements of volume i n  reference 5. I n  b r i e f ,  t he  
primary ion  flow is  divided i n t o  stream tubes ( the  
tor? t r l j e c t n r i e s  arc the stream tube boundaries). 
The cur ren t  flowing i n  each stream tube i s  known 
from the  d i g i t a l  computer so lu t ion .  The ion  ax- 
r ival  r a t e  a t  a pa r t i cu la r  volume element i s  thus 
determined by s d n g  the  contributions from a l l  
t he  stream tubes in te rcepted  by the  volume element. 

The n e u t r a l  atom density,  "0, was assumed t o  
be uniform i n  t h e  in t e re l ec t rode  region and extend- 
ing downstream as far as t h e  neu t r a l i za t ion  plane. 
A value was obtained from t h e  r e l a t i o n  

(2) 

where po i s  t h e  rate a t  which neu t r a l s  leave  the 
screen aper ture ,  A i s  t h e  area of a screen hole, 
and v i s  the r . m . s .  ve loc i ty  of a neut ra l  atom 
a t  500' K. 
dens i ty  f o r  t h e  e n t i r e  ex t rac t ion  system implies 
that t h e  propel lan t  u t i l i z a t i o n  e f f ic iency  per  hole 
va r i e s  s ince  the  cur ren t  dens i ty  per hole i s  not 
uniform. 
rate i n  t h e  in t e re l ec t rode  region was determined by 
S U r m n i n g  a l l  t h e  l o c a l  cont r ibu t ions  ca lcu la ted  by 
equation (1). Results were obtained f o r  a f e w  typ- 
i c a l  cases and are presented i n  t h e  RFSULTS AND 
DISCUSSION sec t ion .  In  order t o  generalize t h e  r e -  
sults t o  cover o ther  cases,  t he  e f f e c t  of changing 
various t h r u s t o r  parameters on t h e  charge-exchange 
ion  production was examined. 
r e l a t i o n s  are given i n  appendix B. 

The assumption of a uniform neu t r a l  

The t o t a l  charge-exchange ion  production 

The re su l t i ng  sca l ing  

RESULTS AND DISCUSSION 

Charge-Exchange Ions 

The charge-exchange ion  ana lys i s  was  performed 
fo r  t h ree  d i f f e ren t  values of cur ren t  ex t rac ted  
from a s ing le  hole i n  the  e lec t rode .  The cur ren t  
values were approximately chosen t o  represent  ex- 
t r a c t i o n  from a typ ica l  ou ter  hole, midsection hole, 
and c e n t r a l  hole of a t h rus to r  operating a t  a beam 
curren t  of 250 mA. The spec i f i c  values used f o r  
ind iv idua l  hole cur ren ts  were 0.230 mA, 0.435 mA, 
and 1.034 mA, respectively,  with corresponding pro- 
pe l l an t  u t i l i z a t i o n  e f f i c i enc ie s  of approximately 
65, 80, and 90 percent.  Figure 3 shows t h e  r e s u l t s  
obtained f o r  group 2 charge exchange ions f o r  t he  
high current,  cen t r a l  hole case. Pa r t  (a) of t h e  
f igu re  shows some typ ica l  charge-exchange ion  t r a -  
j ec to r i e s .  I n  p a r t  (b) t h e  charge-exchange ion 
formation region i s  shown divided i n t o  subregions 
w h i c h  produce ions i n  an ind ica ted  range of disper- 
s ion  angles. No subregion i s  shown producing ions 
with dispersion angles above 44'. This l a c k  of de- 
t a i l  i s  a r e s u l t  of t he  mesh s i z e  used. Actually, 
t he re  w i l l  be a d i s t r i b u t i o n  of ions between 45' 
and 90' dispersion angles t h a t  o r ig ina t e  i n  the  
downstream ha l f  of t he  two subregions near t h e  ax is  
on t h e  r i g h t .  These ions, however, would have very 
low energies s ince  the  zero v o l t  equipoten t ia l  i s  
very c lose  t o  the  region a t  t h a t  point.  Also not 
indicated,  due t c  the  csapceness of t.he mesh used, 
is  a narrow region near t h e  center l ine  of t he  hole 
where t h e  ions formed w i l l  have dispersion angles 
l e s s  than 20' (group (1) type).  
ure 3 the  charge-exchange ion  formation region is  
divided i n t o  subregions that produce ions i n  a par- 
t i c u l a r  energy range. 

I n  p a r t  (c) of f i g -  

Results f o r  t he  midsection and outer hole were 
somewhat similar i n  appearance t o  f igu re  3. It was 
i n t e re s t ing  t o  learn ,  however, t h a t  t he  m a x i m u m  
d ispers ion  angle of t h e  primary ion  beam w a s  l a r g e s t  
f o r  t h e  outer hole. This is a r e s u l t  of "crossover" 
t r a j e c t o r i e s  ( r e f .  5) rather than simple beam 
spreading. 
mary ion  beam boundary ex is ted  a t  n.pproximately a 
15' d i spers ion  angle; however, t h i s  study and t h e  
long duration tests on th rus to r s  ind ica te  t h a t  a 
low primary ion  f l u x  continues out  t o  about a 20' 
dispers ion  angle. 

It was previously thought t h a t  t he  p r i -  

The r e s u l t s  of t h e  ana lys i s  a r e  presented 
graphica l ly  i n  f igures  4 and 5. 
average number of group (2) ions within a pa r t i cu la r  
range of dispersion angles. I n  a l l  t h ree  cases most 
of t h e  ions leave t h e  th rus to r  a t  r e l a t i v e l y  low 
d ispers ion  angles. Figure 5 shows group (2) ion  
energies versus dispersion angle. 
represent  t he  maximum energies determined and t h e  
dashed curves a re  an ex t rapola t ion  of t he  s o l i d  
curves t o  the  90' dispers ion  angle. 
gions cover t h e  areas i n  which a l l  t h e  values of 
t h i s  ana lys i s  occurred. Charge-exchange ions w i l l  
be produced wi th  energies f i l l i n g  the  remainder of 
t h e  a rea  under the  curves, but they w i l l  be r e l a -  
t i v e l y  s m a l l  i n  number. 

Figure 4 shows t h e  

The s o l i d  curves 

The shaded re- 

The groups (1) and (3) charge-exchange ions 
were determined i n  number only ( i . e . ,  spec i f i c  d i s -  
persion angles, or, impact points on t h e  acce lera tor  
f o r  t he  group (3) ions were not recorded). The to -  
t u  number of i'nese cilar.gc-exchZiigE ions VBB C G ~ C U -  

la ted Using equaiiori (1). %e i--ES-LtS okttaincd f o r  
t h e  f irst  th rce  groups of charge-exchange ions  a re  



, 
I s 'mar i zed  i n  t a b l e  I. From the t a b l e  it can be 

seen t h a t  the t o t a l  charge-exchange ion current 
from groups (l), (2 ) ,  and (3) ions was about 0.4 
percent of the t o t a l  beam current .  Of t h i s  t o t a l  
charge-exchange ion current ,  84 percent impinged 
on the accelerator  (group ( 3 ) ) ,  10 percent escaped 
with the  primary beam (group (l)), and 6 percent 
escaped with a dispers ion angle between 20' and 90' 
(group ( 2 ) ) .  
exchange ion f l u x  f o r  group (2)  ions as a function 
of dispersion angle. 
was assumed t h a t  the  thrus tor  could be regarded as 
a point source. A dis tance equal t o  about f i v e  
thrus tor  diameters (75 cm) seems s u f f i c i e n t  f o r  
t h i s  purpose. 

Figure 6 shows the  t o t a l  charge- 

In  preparing t h i s  graph it 

To calculate  the group (4) charge-exchange 
ions (those produced i n  t h e  region downstream of 
the neut ra l iza t ion  plane),  the  following assump- 
t ions  were made: 
:':rmly wcr  the thrus tor  diameter and follow a co- 
s ine  law of divergence, ( 2 )  the  ion f l u x  leaving 
the accelerator  g r i d  i s  paraxial ,  remains paraxial ,  
and i s  of uniform densi ty .  The simplifying assump- 
t i o n  of no beam spreading r e s u l t s  i n  negl igible  
e r ror  o f  t o t a l  number of charge-exchange ions pro- 
duced because: (a)  neut ra l  densi ty  does not change 
appreciably i n  the  region between 0' and 20' beam 
dispers ion,  and (b) t h e  same number of primary ions 
axe considered i n  e i t h e r  case.  

(1) neut ra l s  a re  emitted uni- 

A r a d i a l  neut ra l  densi ty  d i s t r i b u t i o n  was cal-  
culated f o r  severa l  dis tances  downstream of t h e  
thrus tor  using equation (6) of reference 8. 
r e s u l t  of these calculat ions a re  shown i n  f igure  7 .  
The dens i t ies  have been normalized t o  the value of 
neut ra l  densi ty  a t  the neut ra l iza t ion  plane. 
neut ra l  f l u x  gradients  t h a t  would occur near t h e  
thrus tor  because of the  g r i d  s t r u c t u r e  were assumed 
t o  blend i n t o  a smooth p r o f i l e  approximately 3 cen- 
t imeters  downstream. 

The 

The 

Once t h e  neut ra l  densi ty  d i s t r i b u t i o n  is  de- 
termined, the  ca lcu la t ion  of the  charge-exchange 
ion formation r a t e  a t  various locat ions can be 
made using equation (1). The c d c d a t i o n  was made 
using Che t h r u s t o r  operating conditions of 80 per- 
cent propel lant  u t i l i z a t i o n  eff ic iency,  0.250 am- 
pere beam curren t ,  and 3000 v o l t s  net  accelerat ing 
voltage.  A value of 6x10'15 cm2 was used for  Q. 
The r e s u l t  is p l o t t e d  i n  f igure  8 as  the number of 
ions per cm2 per  second passing through the  w a l l  of 
a cyl inder  equivalent i n  shape t o  the assumed p r i -  
mary ion beam (see sketch of cyl inder  on f i g .  8). 
Each charge exchange ion was assumed t o  t r a v e l  
r a d i a l l y  and normal t o  the ax is  a t  the  beam. This 
assumption seems v a l i d  for  the  reasons given below. 
The Charge-exchange ion has only random thermal 
(-500' K) e n e r a  when it i s  formed. 
f i e l d s  e x i s t i n g  i n  the  ion beam w i l l  d i c t a t e  the 
d i r e c t i o n  of t r a v e l  of the charge-exchange ions. 
Reference 9 ind ica tes  t h a t  the  predominate ( a l -  
though small) e l e c t r i c  f i e l d  i n  the  ion beam w i l l  
be r a d i a l .  The energy gained by a charge-exchange 
ion leaving a well  neut ra l ized  beam i s  probably 
l e s s  than about 50 v o l t s .  Figure 8 indicates  t h a t  
the  maximum number of group 4 ions w i l l  be found 
near t h e  t h r u s t o r .  
fur ther  away from the  thr i ls tor  is, of course, due 
t o  the  diminishing neut ra l  eff lux.  

Any e l e c t r i c  

The decreasing number found 

Effects  on Spacecraft  Components 

I n  order t o  give an idea of t h e  possible  a f -  
f e c t s  of the  neut ra l  atom eff luxes and group (2)  
and (4) charge-exchange ions on spacecraf t  compo- 
nents two d i f f e r e n t  shaped surfaces  located down- 
stream of t h e  thrus tor  were considered a s  in te rcept -  
ing these eff luxes.  The f i r s t  surface was a cyl in-  
der, concentric with the primary beam, and with a 
diameter of 150 centimeters o r  10 times the thrus- 
tor  diameter (see f ig .  9 ( a ) ) .  
was assumed t o  spread with a dispers ion angle of 
20'. The length of the cylinder was chosen s o  a s  
t o  just  in te rcept  the primary ion beam. 
surface was a plane, normal t o  the thrus tor  ax is ,  
75 cm downstream and with a hole t o  allow the  p r i -  
mary ion beam t o  pass through (see f i g .  9 (b) ) .  

The primary ion beam 

The second 

A dis tance of 75 centimeters seemed adequate 
for  t h i s  purpose s o  t h a t  the thrus tor  could be r e -  
Rarded as a point source. Figure 10 shows the  d i s -  
t r i b u t i o n  of the  t o t a l  ion f lux  of group ( 2 )  and 
group (4) charge-exchange ions a r r iv ing  a t  the cy- 
l i n d r i c a l  surface as  a function of dispers ion angle. 
The highest  f l u x  occurs a t  low dispers ion angles 
going down t o  a minimum flux between 45O and 50° 
dispersion, and then r i s i n g  again a t  high disper-  
s ion angles due t o  the  increasing contr ibut ion of 
group (4) ion fluxes. 

The f lux  a r r iv ing  a t  the  plar?ar surface normal 

Figure 10 @so shows the 
t o  t h e  thrus tor  ax is  is  e n t i r e l y  due t o  the  group 
(2)  charge-exchange ions.  
d i s t r i b u t i o n  of t h i s  f l u x  as a runction of disper-  
s ion angle. The highest  f l u x  again occurs a t  low 
dispers ion angles, dropping t o  zero a t  the higher 
dispers ion angles.  

The charge-exchange ion f lux  a r r iv ing  a t  the 
surfaces used i n  the  revious ca lcu la t ion  can vary 
from zero t o  about l& p a r t i c l e s  per cm2 per  sec- 
ond. Their energy range is from 0 t o  about 2 .5  kV. 
In comparison, cosmic rad ia t ion  f l u x  i n  deep space 
is about Z . 3  p a r t i c l e s  per cm- pcr s c ~ u d  (i-ifs. 13, 
11, and E). This f l u x  cons is t s  mainly of protons 
with energies from 10 t o  1s2 MeV. 
hand the proton f lux  i n  the  Van Allen b e l t s  ranges 
up t o  lo9 protons per cm2 per second with an energy 
range from 0.1 keV t o  700 MeV ( re f s .  10, 11, and 
12) .  Damage t o  solar c e l l s  by t h e  na tura l  rad ia t ion  
f l u x  is caused pr imari ly  by the penetrat ion of the  
high energy p a r t i c l e s  i n t o  the c e l l  i t s e l f  which 
can cause a degradation i n  performance. The f lux  
from the thrus tor  does not possess s u f f i c i e n t  energy 
t o  penetrate  a s h i e l d  such as a 0.1 millimeter 
thickness of quartz comoaly used t o  pro tec t  t h e  
c e l l  from na tura l  rad ia t ion .  
t h a t  any damage done by the thrus tor  e f f lux  would 
be a r e s u l t  of sput ter ing erosion. I f  a sput te r ing  
y i e l d  of one p a r t i c l e  per incident  ion for  mercury 
on quartz ( r e f s .  13 and 14) and a f l u x  of la ions 
per  cm2 per second i s  assumed, the  r e s u l t i n g  wear 
r a t e  is 3 . M O - l 3  centimeters per second. The wear 
r a t e  of s i l v e r ,  assuming a sput te r ing  y i e l d  of 
seven atoms e r  incident ion ( r e f s .  13 and 14) and 
a f l u x  of l& ions per cm2 per second is  
5 . 8 7 ~ 1 0 ~ ~ ~  cm/sec. Most mater ia ls  have wear r a t e s  
between these t w o  values.  A t  these wear r a t e s  it 
would take  1.Bx106 hours t o  wear away one-quarter 
of a 0.1 mill imeter t h i c k  quartz sh ie ld .  
t h i s  wear r a t e  would increase f o r  components l o -  

7 

On the  other  

Rather it seems l i k e l y  

Of course, 

- L - =  ----..- &.. +ha +hr7,c+nr- 

The neut ra l  f lux  was calculated by assuming a 

f a b C u  LLvY=I  Y" "*I_ -1- -- "-_ 
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I h i f o r m  f l u x  across t h e  surface of the  accelerator  
gr id ,  a cosine d i s t r i b u t i o n  f o r  the dispersion, and 
a t o t a l  flow of 3.%1G7 neut ra l s  per second which 
corresponds t o  the operating conditions used i n  
t h i s  study. Figure 11 shows the d i s t r i b u t i o n  of 
neut ra l  p a r t i c l e s  intercepted by the c y l i n d r i c a l  
and planar surfaces shown i n  f igure  9. The energy 
of the  neutrals  i s  below the sput te r ing  threshold 
energy, therefore  the  most probable e f f e c t  of these 
neutrals  would be f i lm deposit ion.  Thus, it be- 
comes important t o  compare t h e  a r r i v a l  r a t e  of neu- 
t r a l s  with t h e i r  evaporation r a t e  a t  the assumed 
conditions.  The evaporation r a t e  r e l a t i o n  is  

(3) 

Assuming a temperature of 330' K f o r  the com- 
ponent ( r e f .  15), t h i s  corresponds t o  an equi l ib-  
r i u m  vapor pressure f o r  mercury of 2~10-' t o r r .  A t  
these conditions,  the evaporation r a t e  is 2. 73Xlg8 
k-rticles/cmL per second. Comparing t h i s  v?lue 
with the  values on f igure  11, it can be seen t h a t  
the p o s s i b i l i t y  of forming a coating on these sur- 
faces,  other  than a chemisorbed monolayer, is in-  
deed remote. For cesium propel lant  the  evaporation 
r a t e  would be approximately three  orders of magni- 
tude l e s s .  For the  a r r i v a l  f luxes calculated,  this 
lower evaporation r a t e  i s  s t i l l  enough t o  preclude 
coating. 

coNcLusIoNs 

'Ibe r e s u l t s  of t h i s  study indicate  t h a t  t h e  
e f f e c t s  of charge-exchange ions and neut ra l  p a r t i -  
c l e  eff luxes from a 15 centimeter diameter mercury, 
electron-bombardment ion  thrus tor  on spacecraf t  
components w i l l  be minimum outs ide the  primary ion 
beam and a t  dis tances  of a t  l e a s t  75 centimeters 
from the  thrus tor .  Under the  assumed conditions,  
s i l v e r ,  f o r  example, would wear a t  a r a t e  of 
3 . € ~ 1 0 - ~ ~  centimeters per  second and quartz would 
wear a t  a r a t e  os s.ttrxiir-13 ceniirueiass yii- SBC- 
ond. For most components t h i s  wear r a t e  should be 
t o l e r a b l e  f o r  missions of l e s s  than 100,000 hours. 
A t  d is tances  much c loser  than 75 centimeters a 
more d e t a i l e d  study would be required because at 
these  c loser  dis tances  t h e  thrus tor  cannot be ac- 
cura te ly  represented as a point  source. 

Coating of components with neut ra l  mercury 
atoms should not  be a problem a t  distances of a t  
l e a s t  75 centimeters s ince the  p a r t i c l e  eff luxes 
are about seven orders of magnitude lower than the  
evaporation rata at aii assuied compcnent tempera- 
t u r e  of 330' K. 

The approximate sca l ing  r e l a t i o n s  given i n  ap  
appendix B should allow rough determination of par- 
t i c l e  e f f luxes  f o r  various combinations of operat-  
ing parameters other  than those used i n  this study. 

APPENDIX A 

SYMBOLS 

A a rea  of screen hole 

a cross  s e c t i o n a l  a rea  of volume element 

incremental length 

mass 

charge-exchange ion formation r a t e  

ion a r r i v a l  r a t e  

neut ra l  atom densi ty  

n e u t r a l  atom evaporation r a t e  

pressure 

charge -exchange cross -sect ion 

average radius  ,of to r ro id  

temperature 

t i m e  

volume 

ve loc i ty  

propel lant  u t i l i z a t i o n  eff ic iency 

a r r i v a l  r a t e  of neutrals  

e l e c t r i c  p o t e n t i a l  

APPEKDM B 

SCALING RELATIONS 

Scaling r e l a t i o n s  were developed by consider - 
ing "equivalent cases." Two Oases were considered 
equivalent i f  t h e i r  p o t e n t i a l  d i s t r ibu t ions  as  de- 
termined from d i g i t a l  computer analysis  were s i m i -  
lar i n  shape and i f  t h e  loca t ion  of t h e  zero v o l t  
equipotent ia l  l i n e  was about the same i n  each case. , 

The concept OS equivaienr cases is use id  iii Yhzt 
all t r a j e c t o r i e s ,  both those of primary ions and 
charge-exchange ions, follow i d e n t i c a l  paths.  To 
begin, severa l  cases of i n t e r e s t  a r e  f i r s t  run on 
t h e  d i g i t a l  computer t o  obtain p o t e n t i a l  d i s t r i b u -  
t i o n s .  Charge-exchange currents  a r e  then de ter -  
mined. Now, suppose a solut ion is  desired f o r  a 
case t h a t  has a d i f f e r e n t  combination of operating 
parameters than any of the  ones previously run. 
This new case is  f i r s t  run on the  d i g i t a l  t o  obtain 
a p o t e n t i a l  d i s t r ibu t ion .  The previous cases a re  
examined f o r  one which is  "equivalent" t o  the  new 
case.  
below it i s  possible  t o  determine approximate values 
of t h e  charge-exchange currents.  The scal ing pa- 
rameters developed i n  general  apply only t o  e lec-  
t r o n  bombardment thrus tors .  

Tnen by using the  scal ing r e l a t i o n s  given 

Propellant Ut i l iza t ion  Efficiency 

An expression r e l a t i n g  the primary ion  flow 
rate h, the  neut ra l  atom a r r i v a l  r a t e  110, and the  
propel lant  u t i l i z a t i o n  eff ic iency 9, is  as f o l -  
lows : 

(B1) 
I l o = ( 1 - q ) -  n 

qu 

Now, from equations (l), (2), and (Blj 
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P a r t i c l e  Temperature 

From equations (1) and (2) 

- 1  N a -  
V 

and s ince  v a (T)iFz, where T is  the  temperature 
of t he  p a r t i c l e ,  

so t h a t  

Accelerating Voltage 
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N a 9' 
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provided that t h e  same f r a c t i o n  of space-charge- 
limited cu r ren t  flow i s  maintained. 
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Exhaust 
beam 

region 

Central 

Kidsection 

Outer 

Total 

Propellant Charge-exchange i o n  current ,  mA 
u t i l i za t ion  
efficiency Group (1) Group (2) Group (3) Total 

c 

Q.90 0.016 0.018 0.330 0.364 

0.80 0.048 0.026 0.330 0.404 

0.120 0.154 0.65 0.026 0.008 

0.80 0.090 0.052 0.780 0.922 

TABLE I. - GROUP (l), (2), AND (3) CHARGE-MCHAWE I O N  PRODUCTION. 

Current 
Per 

hole, 
mA/hole 

1.034 

0.435 

0.230 

- 

Number 
of holes 
allocated 

85 

256 

170  

5l.l 

Primary 
beam 

current, 
mA 

87.9 

111.4 

39.1 

238.4 
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Fig. 1. - Electron bombardment ion tnrustor. 

Pri- 
mary Accelerator, 

-2 kV-, 
Screen, beam / Neutralization plane 

Group (4) 

sheath, (1) ions ions neutralization plane 
+ 3  kV 

Figure 2. - Electrode configuration showing the four groups of charge- 
exchange ions. 
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(b) Angular dispersion. 

m20"-24' m25"-29"  B30"-34" m35"-44" 

Screen 

- 4  

sl-1 \ -  tion plane-, I 

(c) Energy distribution. 

mi 7 &. A-? 7 *. n " ~ o V  ..", 1.8-1; 39 keV 1.2-1.79 keV 

a O . 6 - 1 . 1 9  keV HO. 0-0.59 keV 

Figure 3. - Charge-exchange ion formation for group (2) ions with a 
central hole. Primary ion current of 1.034 mA Propellant utiliza- 
tion, 90 percent 
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Figure 5. - Group (2) charge-exchange ion energy against 
dispersion a ng I e. 
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Figure 6. - total group i2i ciiaiye-exciiaiige ioiis ejcaping :h:i;s?o:. - . .  
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Figure 7. - Calculated values of neutral density for various dis- 
tances downstream of neutralization plane. 

:Charge-exchange ions 
\ ‘,I , 

4 j l r  Y 

4 x d 3  
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Thrustor ‘4 k y l i n d e r ,  
15-cm diam 

Distance downstream of neutralization plane, cm 

Figure 8 - Calculated values of group (4) charge-exchange ions 
passing Inruuyll ’’ - - - . - L  &k- Lltc r*l**a,-n J~I Iu \ r l  nf ”. a I IC;-centimeter diameter cyl- 
inder, the assumed primary ioii %.am k.i;nba:y. 
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Figure 11. - Neutral flux arriving at the 
two surfaces shown in figure 9. 
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